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Simplicity of state and overlap structure in finite-volume realistic spin glasses

C. M. Newman
Courant Institute of Mathematical Sciences, New York University, New York, New York 10012
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~Received 25 September 1997!

We present a combination of heuristic and rigorous arguments indicating that both the pure state structure
and the overlap structure of realistic spin glasses should be relatively simple: in a large finite volume with
coupling-independent boundary conditions, such as periodic, at most a pair of flip-related~or the appropriate
number of symmetry-related in the non-Ising case! states appear, and the Parisi overlap distribution corre-
spondingly exhibits at most a pair ofd functions at6qEA . This rules out the nonstandard mean-field picture
introduced by us earlier, and when combined with our previous elimination of more standard versions of the
mean-field picture, argues against the possibility of even limited versions of mean-field ordering in realistic
spin glasses. If broken spin-flip symmetry should occur, this leaves open two main possibilities for ordering in
the spin glass phase: the droplet-scaling two-state picture, and the chaotic pairs many-state picture introduced
by us earlier. We present scaling arguments which provide a possible physical basis for the latter picture, and
discuss possible reasons behind numerical observations of more complicated overlap structures in finite vol-
umes.@S1063-651X~98!07202-X#

PACS number~s!: 05.50.1q, 75.10.Nr, 75.50.Lk
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I. INTRODUCTION

Prevalent scenarios@1,2# concerning realistic spin glasse
require that the nature of the spin glass order parameter~i.e.,
the Parisi overlap distribution! and the structure of the ther
modynamic states from which it is obtained be highly co
plex; see, for example, Refs.@3–19#. This complexity is as-
serted to be a consequence of the existence of m
competing pure states. In previous papers@20–25# we
showed that the standard picture of this complex struc
~including non-self-averaging of the thermodynamic over
distribution function, ultrametricity of distances among
pure states for fixed coupling realization, etc.! cannot hold in
any finite dimension. However, at the same time we p
sented~as a logical possibility! a nonstandardmean-field
picture in which some of these features appear in fin
dimensional spin glasses but in a more limited sense —
in large finite volumes with coupling-independent bounda
conditions such as periodic. In this picture, only asubsetof
all the pure states appears in each finite-volume mixed s
~which varies with volume!; those pure states along wit
their weights and overlaps retain some mean-field struct

In this paper, however, we provide both heuristic and r
orous arguments that indicate the state and overlap struc
in finite volumes must in fact be relatively simple. This is
even if there are many pure states overall. These argum
preclude the possibility of any type of mean-field structu
— even the nonstandard, limited type — for the spin gla
phase in finite dimensions.

Although the arguments and conclusions of this paper
applicable to fairly general examples of disordered syste
we will focus on the Edwards-Anderson~EA! Ising spin
glass@26#. When there are many pure~infinite volume! states
ra, it has been generally believed@1# that the finite-volume
Gibbs staterJ

L ~for a coupling configurationJ in the cube
571063-651X/98/57~2!/1356~11!/$15.00
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LL of sideL centered at the origin with, say, periodic boun
ary conditions! is ~approximately! a mixture of many pure
states:

rJ
~L !'(

a
WJ,L

a rJ
a ~1!

and the finite-volume overlap distributionPJ
L(q) is ~approxi-

mately! the corresponding mixture of manyd functions:

PJ
L~q!'(

a,g
WJ,L

a WJ,L
g d~q2qJ

ag!, ~2!

whereqJ
ag is the overlap between the pure statesa andg:

qJ
ag5 lim

L8→`

uLL8u
21 (

xPLL8

^sx&
a^sx&

g. ~3!

Of course, if there is only a single pair of pure stat
~related by a global spin flip! as in the droplet-scaling pictur
of Refs.@27–30# ~see also@31,32#!, then for eachL, PJ

L(q)
will simply approximate a sum of twod functions at6qEA .
We will argue here thatthe same conclusion is true for th
finite-volume overlap distributions even when there are m
pure states. This is becauserJ

L will still be approximately a
mixture of a single pair of pure states, although now th
choice of the pair will depend uponL. This scenario was
previously proposed in Refs.@21–23# as a logical possibility
that followed from the metastate approach introduced
those papers. Here we will argue that it is the onlyreason-
ablepossibility consistent with many pure states, and we w
also present scaling arguments that provide a physical b
for it and at the same time explain its relation to the ear
and simpler two-state droplet-scaling picture.
1356 © 1998 The American Physical Society
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57 1357SIMPLICITY OF STATE AND OVERLAP STRUCTURE . . .
It is important to note that in computing overlap distrib
tions as in Eq.~2!, the region in which the computation i
done should be small compared to the overall size of
system — i.e., the system boundaries should be far from
region of interest. The reasons for this were discusse
some length in the Appendix to Ref.@22#, and will be re-
turned to in Sec. VI. This guarantees that one is focusing
the thermodynamic states of the system@22,28# and avoiding
extraneous finite size and boundary effects.

With this understanding, our arguments indicate that
nonstandard Sherrington-Kirkpatrick~SK! picture, intro-
duced by us previously as the only remaining viable me
field-like picture, is not valid in any dimension. The read
may wish to glance ahead at Sec. IV in which this conc
sion, one of the main results of the paper, is presented.

The plan of the paper is as follows. In Sec. II we revie
the concept of metastates. In Sec. III we discuss previo
proposed scenarios for the spin glass phase, including
newer chaotic pairs and nonstandard SK pictures. In Sec
we present the first of our main results, a theorem on
invariance of the metastate with respect to flip-rela
boundary conditions, and then discuss the consequence
the theorem. We will see why this result should be inco
patible with any but the simplest spin glass ordering, and
particular how that argues against the nonstandard SK
ture. In Sec. V we will provide a scaling basis for the chao
pairs picture, and present one possible physical scenario
der which it would occur. In Sec. VI we discuss, in light
our results, the question of why some numerical experime
appear to see a complicated overlap structure. We fur
discuss appropriate procedures for computing overlap st
tures in finite volumes as a means of extracting at least
tial information on ordering in the low-temperature pha
Finally, in Sec. VII we present our conclusions.

II. METASTATES

For specificity, we will focus on the Edwards-Anderso
model @26# which, on a cubic lattice ind dimensions, is
described by the Hamiltonian

HJ~s!52 (
^x,y&

Jxysxsy , ~4!

where J denotes the set of couplingsJxy and where the
brackets indicate that the sum is over nearest-neighbor p
only, with the sitesx,yPZd. We will take the spinssx to be
Ising, i.e.,sx561; although this will affect the details o
our discussion, it is unimportant for our main conclusio
The couplingsJxy are quenched, independent, identica
distributed random variables; throughout the paper we
assume their common distribution to be symmetric ab
zero ~and usually with the variance fixed to be one!. The
most common examples are the Gaussian and6J distribu-
tions. The infinite-ranged version of the EA model was
troduced by Sherrington and Kirkpatrick@33# and is com-
monly referred to as the SK model.

Numerical studies of spin glass overlap structure in
EA model study finite-volume cubes with~usually! periodic
boundary conditions@19,34,35#. A crucial property of disor-
dered systems with many competing states is that, altho
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particular pure states may be picked out by a special ch
of boundary conditions depending on the disorder reali
tion, such boundary conditions are not relevant for comp
son either to experiments on physical spin glasses or to
merical simulations. In all of these cases bounda
conditions are chosenindependentlyof the coupling realiza-
tion.

In this paper we will therefore focus on either fixed
periodic boundary conditions~BC’s! ~and their flip-related
BC’s; see Sec. IV! chosen independently of the coupling
From a theoretical point of view, observable properties
this situation are amenable to analysis by means of the m
astate approach@21–25#.

Metastates enable us to relate the observed behavior
system in large but finite volumes with its thermodynam
properties. This relation is relatively straightforward for sy
tems with few pure states or for those whose states are
lated by well-understood symmetry transformations; but
the presence of many pure states not related by any obv
transformations, this relation may be subtle and complex
these cases the metastate approach may be highly usef

One reason for this is that, in the presence of many co
peting pure states, a sequence asL→` of finite-volume
Gibbs measures on cubesLL with coupling-independen
BC’s will generallynot converge to a single limiting thermo
dynamic state@36#. We call this phenomenonchaotic size
dependence~CSD!. In the metastate approach, we exploit t
presence of CSD by replacing the study of single thermo
namic states~as is conventionally done! with anensembleof
~pure or mixed! thermodynamic states. This approach, bas
on an analogy to chaotic dynamical systems, enables u
construct a limiting measure, but it is a measure on the th
modynamic states themselves.

This ~infinite-volume! measure contains far more info
mation than any single thermodynamic state. It has a part
lar usefulness in the context of the study of finite volum
because it carries — among other things — the followi
information. Suppose that there exist many thermodyna
states in some~fixed! dimension and at some~fixed! tem-
perature. Then~for example! the periodic BC metastate~con-
structed from an infinite sequence of finite-volume Gib
measures on cubes with periodic boundary conditions! tells
us the likelihood of appearance of any specified thermo
namic state, pure or mixed, in a typical large volume. Mo
precisely, it provides a probability measure for all possib
1,2, . . . ,n-point correlation functions contained in a bo
centered at the origin whose sides are sufficiently far fr
any of the boundaries so that finite size effects do not ap
ciably affect the result.

Details on the construction and properties of the metas
were given in previous papers@21–23#. Here we simply re-
count some central features. The histogram, or empirical
tribution approach, is a type of microcanonical ensem
which considers at fixedJ a sequence of volumes wit
specified BC, such as periodic. The resulting sequence
finite-volume Gibbs statesrJ

(L1) ,rJ
(L2) , . . . ,rJ

(LN) each is
given weightN21. This ‘‘histogram’’ of finite-volume Gibbs
states converges to somekJ asN→`. The ~periodic BC, in
this example! metastatekJ is a probability measure on ther
modynamic statesG at fixedJ, and specifies the fraction o
cube sizes that the system spends in each different~possibly
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1358 57C. M. NEWMAN AND D. L. STEIN
mixed! thermodynamic stateG @37#.
An alternative~and earlier! construction of the metastate

in which the randomness of the couplings is used directly
generate an ensemble of states, was provided by Aizen
and Wehr@38#. In this approach one considers the limitin
joint distributionm(J,rJ

(L)) asL→`. Technical details can
be found in@22–24,38#.

It can be proved that there exists at least aJ-independent
subsequence of volumes along which the two approac
~empirical distribution and Aizenman-Wehr! yield thesame
limiting metastate@22–24#. This will be important in what
follows @39#.

Occasionally a distinction is drawn between finite- a
infinite-volume states~see, for example,@19#!, where it is
argued that the first is more physical and the second me
mathematical in nature. While we have shown@22# that the
relation between the two may be more subtle than previou
realized — at least in the case where many competing st
are present — we also argue that the distinction drawn ab
is misleading. Indeed, it should be clear from the discuss
above that the metastate approach is specifically constru
to consider both finite and infinite volumes together and
unify the two cases. In the next section, guided by this
proach, we review various allowable scenarios for the
spin glass phase.

III. THE FINITE-DIMENSIONAL SPIN GLASS PHASE

Of the possible scenarios for spin glasses at low temp
ture, the simplest is that spin-flip symmetry is not broken
positive temperatures in any dimension. This would be
case if there were no phase transition at all and the param
netic state persisted to arbitrarily low temperatures. It wo
also be the case if therewerea phase transition but the EA
order parameterqEA @corresponding to the self-overlap of
pure state, i.e.,qJ

aa in Eq. ~3!# remained zero. Such a phas
might have, e.g., single-site magnetizations equalling zer
low temperatures but two-spin correlation functions dec
ing as a power law at large distances.

More likely, however, is that spin-flip symmetryis broken
for d.d0 and T,Tc(d) @2#. In that case the simplest sce
nario for the low-temperature spin glass phase is the Fis
Huse scaling-droplet picture@27–30# ~see also@31,32#!, in
which a single pair of pure states is present. In that case,
periodic BC’s, CSD is absent, and the metastate is con
trated on a single mixed thermodynamic state, with each
the two pure states having weight 1/2. This picture see
internally consistent.

We now consider possible many-state pictures. In
standard SK picture, there is an overlap distributionPJ(q)
that exhibits non-self-averaging~NSA! even after the ther-
modynamic limit has been taken@6–8#; that is, it fluctuates
with J even though it is a thermodynamic quantity. Oth
features of this picture include ultrametricity amongall pure
state overlaps and a continuous part ofP(q) @the average of
PJ(q) over allJ] between6qEA . For details, see@1#.

However, this standard SK picturecannot hold ~in any
dimension and at any temperature! @20# because the transla
tion invariance ofPJ(q) combined with the translation er
godicity of the underlying distribution of couplings implie
that PJ(q) must be self-averaged@40#.
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This problem with the standard SK picture might sou
like a mere mathematical technicality — for which on
might hope to find a technical solution. But in fact this pi
ture has an inherent conceptual flaw — namely, the ba
problem that a single-staterJ is simply not a rich enough
description of theL→` behavior of a thermodynamic sys
tem where CSD occurs. In such a picture, one is in eff
replacing with a single state all of the information contain
in an entire distribution of states, i.e., the metastate. We n
consider two nonstandard pictures, each of which ari
naturally in the context of the metastate approach and
possible presence of CSD.

The first of these resembles the Fisher-Huse picture
finite volumes, but has a very different thermodynamic str
ture. It is a many-state picture, but unlike in the mean-fi
picture each large volume~with periodic boundary condi-
tions! ‘‘sees’’ essentially only one pair of states at a time~in
Sec. VI we discuss what it means for a finite volume
‘‘see’’ a thermodynamic state, pure or mixed!. In other
words, for largeL, one finds that

rJ
~L !'

1

2
rJ

aL1
1

2
rJ

2aL, ~5!

where2a refers to the global spin flip of pure statea. Here,
the pure state pair~of the infinitely many present! appearing
in finite volume depends chaotically onL. Unlike the
droplet-scaling picture, this new possibility exhibits CS
with periodic BC’s. In this ‘‘chaotic pairs’’ picture the~pe-
riodic BC! metastate is dispersed over~infinitely! manyG ’s,

of the form G5Ga5 1
2 rJ

a1 1
2 rJ

2a . The overlap distribution

for each G is the same:PG5 1
2 d(q2qEA)1 1

2 d(q1qEA).
Like the Fisher-Huse picture, this scenario also seems in
nally consistent. It is interesting to note that a highly diso
dered spin glass model@41,42# ~see also@43#! appears to
display just this behavior in its ground state structure in s
ficiently high dimension.

The last picture we discuss is a nonstandard SK-like p
ture that resembles the standard SK picture in finite volum
but has an altogether different thermodynamic structure. T
picture, which also assumes infinitely many pure states,
ganizes them such that eachG5(aWJ

arJ
a . The metastatekJ

is dispersed over many suchG ’s, so that differentG ’s again
appear in different volumes, leading to CSD. Unlike the ch
otic pairs picture, eachPG depends onG ~because eachG is
now itself a nontrivial mixture of infinitely many pure
states!. However, the ensemble ofPG’s ~like the singlePJ of
the standard SK picture! doesnot depend onJ ~again be-
cause of translation invariance and ergodicity!. So the con-
ventional meaning of NSA — thermodynamic quantiti
such as the overlap distribution depending onJ — is re-
placed by a new notion: not dependence onJ but rather
dependence on the stateG within the metastate for fixedJ.
Moreover, ultrametricity of overlaps among pure states m
be present within individualG ’s, but not for all of the pure
states taken together. A more detailed description of
nonstandard SK picture is given in Refs.@21–23#.

Given the results of@20#, the nonstandard SK picture i
the only remaining viable mean-field-like picture. We ha
presented preliminary arguments~based on the invariance o
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57 1359SIMPLICITY OF STATE AND OVERLAP STRUCTURE . . .
the ensemble ofPG’s with respect toJ; we refer the reade
to Ref. @22# for details! that already cast some doubt on
validity, by demonstrating that the nonstandard SK pict
requires an enormous number of constraints to be simu
neously satisfied. In the next section we present further
guments that more strongly rule it out as a viable possibil

IV. INVARIANCE OF THE METASTATE

The main result of this section is a theorem on the inva
ance of the metastatekJ with respect to boundary condition
that are flip related. Two~sequences of! BC’s are flip related
if, for each finiteL, there is some subset of the bounda
]LL whose flip transforms one BC for thatL into the other.
An obvious example of flip-related boundary conditions a
periodic and antiperiodic; a second example is any two fi
boundary conditions, i.e., where each spin on the bounda
specified. On the other hand, periodic and fixed BC’s are
flip related.

In the following theorem we continue to assume that
common distribution of the couplingsJxy is symmetric about
zero, i.e., thatJxy has the same distribution as2Jxy , and
that the external field is zero.

Theorem.Consider two metastates constructed~at fixed,
arbitrary dimension and temperature, and using either
histogram method or the Aizenman-Wehr method! using two
different boundary conditions, with neither depending onJ,
on an infinite (LN→`) sequence of cubesLLN

. If the two
different sequences of boundary conditions are flip rela
then the two metastates are the same~with probability one —
i.e., for almost everyJ).

Proof. We use the fact, discussed above, that along so
J-independent subsequence of volumes both the histog
construction of metastates and the Aizenman-Wehr const
tion have a limit, and that limit is the same. Because
Aizenman-Wehr construction averages over couplings
infinity’’ ~for details, see Refs.@21–24,38#!, it rigorously fol-
lows ~using gauge transformation arguments like those u
in the proof of Theorem 3 in Ref.@36#! that the two met-
astates must be the same.

This is a striking result~despite the brevity of the proof!,
with important physical consequences. It says, for exam
that the periodic BC metastatekJ must be the same as th
antiperiodic BC metastate. In fact, if one were to choo
~independently ofJ) two arbitrary sequences of periodi
and antiperiodic BC’s, the metastates~with probability one!
would still be identical. In other words, the metastate~and
corresponding overlap distributions constructed from it! at
fixed temperature and dimension is highlyinsensitive to
boundary conditions.

To appreciate the implications of this, consider the his
gram construction of the metastate. The invariance of
metastate with respect to different sequences of periodic
antiperiodic BC’s means that the frequency of appearance~in
finite volumes! of various thermodynamic states is~with
probability one! independentof the choice of boundary con
ditions. Moreover, this same invariance property holds~with
probability one! among any two sequences offixedboundary
conditions~and the fixed boundary condition of choice m
even be allowed to vary arbitrarily along any single seque
of volumes!. It follows that, with respect to changes o
e
a-
r-
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boundary conditions, the metastate is highly robust.
Of course, the insensitivity of the metastate with resp

to changes of boundary conditions would be unsurprisin
there were only a single thermodynamic state~e.g., paramag-
netic! or a single pair of flip-related states as in the drop
picture. But it is difficult to see how our result can be reco
ciled with the presence ofmany thermodynamic states; in
deed, at first glance it would appear to rule them out.

Nevertheless, we argue below that our theorem doesnot
rule out the existence of many states, but clearly puts se
constraints on the form of the metastate~and overlap distri-
bution function, which also possesses this invariance pr
erty!. Our heuristic conclusion is that, in light of this stron
invariance property, any metastate constructed via coupl
independent BC’s can support only a very simple structu
As a consequence, we will argue that this theorem effectiv
rules out the nonstandard SK picture.

To see that anuncountableset of pure states is not rule
out ~we will discuss countably infinite sets below!, consider
the highly disordered ground state model@41# in high dimen-
sions, which is believed to exhibit a version of the chao
pairs picture with uncountably many states. Our invarian
theorem applies to this model also, and so~e.g.! the periodic
and antiperiodic metastates must be the same, even th
we might a priori expect them to be different. By wha
mechanism could this happen? The most natural possib
is that both the periodic and antiperiodic BC metastates
the same as the free BC metastate@44# in which all relative
signs between the different trees in the invasion forest~see
Refs.@41,42# for details! are equally likely. That is, each o
these metastates consists of auniform distribution on the
ground state pairs. Given that, it does not seem unreason
that all sorts of different BC’s should give rise to a simil
uniform distribution. Indeed, any fixed BCdoesgive a uni-
form distribution on allsingleground states@41,42#.

But this line of reasoning does appear to rule out
chaotic pairs picture with acountableinfinity of states. In
that case, of course, one cannot have a uniform distribu
~i.e., all equal, positive weights within the metastate!. So
now suppose that for someJ the periodic BC metastate as
signs, for example, probability 0.39 to one pair of pu
states, 0.28 to another, and so on. In other words, with p
odic BC’s 39% of the finite cubes prefer pair number 1, 28
prefer pair number 2, etc. So pair number 1 is the ove
‘‘winner’’ ~among different finite volumes! in the periodic
BC popularity vote.

It now seems clear heuristically, though, that the popu
ity vote byantiperiodic BC’sshould come out differently; it
is unreasonable to suppose that pair number 1 be prefe
by 39% of the periodic BC cubes and at the same time
39% of the antiperiodic BC cubes. The uniform distributio
conclusion seems even more inevitable when one consi
that analogous arguments also apply to pairs of arbitra
chosen sequences offixedboundary conditions.

We conclude that consistency between our invaria
theorem and the existence of~uncountably! many states re-
quires, in some sense, an equal likelihood of the appeara
~in the metastate! of all states, i.e., some sort of uniform
distribution on them. Let us examine this further. We ha
already noted that different sequences of volumes with fi
BC’s — i.e., all volumes having plus boundary condition
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1360 57C. M. NEWMAN AND D. L. STEIN
all volumes having plus on some boundary faces and m
on others, all volumes with each boundary spin chosen
the flip of a fair coin, and so on — result in the same m
astate. We note for future reference that the term ‘‘chao
pairs,’’ which was chosen in reference to spin-symme
BC’s ~such as periodic! should be replaced here by ‘‘chaot
pure states’’; i.e., in this picture, the Gibbs state in a typi
large volumeLL with fixed BC’s will be ~approximately! a
single pure state that varies chaotically withL. But we ex-
pect that the mixed staterJ , which is theaverageover the
metastate@20–23#,

rJ~s!5E G~s!kJ~G!dG, ~6!

would be the same for periodic and fixed BC’s. One can a
think of this rJ as the average thermodynamic sta
N21(rJ

(L1)
1rJ

(L2)
1•••,rJ

(LN)), in the limit N→`.
Now consider the mixed boundary condition in whichev-

ery fixed BC on the boundary of eachLL is given equal
weight. If there are~uncountably! many pure states presen
then in a typical large volume one would expect to se
Gibbs state which approximates a continuous mixture o
the pure states~cf. Possibility 3 or 4 discussed in Ref.@21#!.
But we still expect that the average over the mixed BC m
astate would be the samerJ as for the fixed BC metastate
the periodic BC metastate, and so on. That is, the ave
over the metastate should be even more robust than the
astate itself, i.e., it should be the same for metastates
structed through any two sequences of ~coupling-
independent! BC’s, not just flip-related ones.

Although logically possible, it seems unreasonable t
this last~mixed BC with all fixed BC’s given equal weight!
metastate, chosen from a maximally uniform mixture
boundary conditions, can have anything other than a unifo
distribution over the pure states. But, as just pointed out,
distribution should be the same for this as for all the ot
metastates under discussion.~We caution the reader that, un
like the case of the strongly disordered model@45#, we do
not have a precise sense in which this distribution can
defined to be uniform. For that reason, this part of the ar
ment must be regarded as heuristic.!

With these points in mind, we now turn to a discussion
the nonstandard SK picture, and other possible mixed s
scenarios.

The nonstandard SK picture requires@cf. Eq. ~1!# that the
G ’s appearing in the metastate be of the form(aWJ

arJ
a , with

at least some subset of the weightsWJ
a in eachG nonzero

and unequal. We would then have a situation like the follo
ing. With periodic BC’s, say, the fraction ofL j ’s for which
the finite-volume Gibbs state inLL j

puts ~e.g.! at least 84%
of its weight in one pair of pure states~but with that pair not
specified! is 0.39. But then it must also be the case that w
antiperiodic BC’s the fraction of volumes for which th
finite-volume Gibbs state puts at least 84% of its weight
some unspecified pair is still exactly 0.39. Moreover, t
same argument must apply to any ‘‘cut’’ one might care
make; i.e., one constructs the periodic BC metastate
finds thatx% of all finite volumes have puty% of their
weight inz states, withz depending on the~arbitrary! choice
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of x andy. Then this must be true also for all volumes wi
antiperiodic BC’s; and similarly~but possibly separately!
among all pairs of fixed BC states.

Once again, the only sensible way in which this cou
happen would be for the selection of states to be relativ
insensitive~in some global sense! to the choice of boundary
conditions, i.e., for the BC’s to choose the states in so
‘‘democratic’’ fashion without favoritism so thatrJ , the av-
erage over the metastate, should be some sort of unif
mixture of the pure states, as before. However, unlike in
chaotic pairs picture discussed earlier, we claim that thiscan-
not happen when theG ’s are ~nontrivial! mixed states.

The reason for this is that the metastate has a strong
variance property@38# ~see also@22#! in which theG ’s must
transform in a specified way under an arbitrary finite chan
in the coupling realization. Under this finite change, the e
semblekJ(G) transforms~as would any probability mea
sure! according to the change of variablesG→G8. Here,
G8 is the thermodynamic state with correlation
^sA&G85^sAe2bDH&G /^e2bDH&G , whereDH is the change
in the Hamiltonian.

Under this change of variables, pure states remain p
and their overlaps do not change. However, the weig
which appear in eachG will in general change, as one wou
expect. To see this, consider a particularG having a discrete
pure state decomposition

G5(
a

WG
arJ

a~s!, ~7!

with many nonzero weightsWG
a . Suppose that one chooses

particular coupling Jxy and imposes the transformatio
Jxy→Jxy8 5Jxy1DJ. Then the weightWa ~within G) of the
pure statea will transform for eacha as

Wa→W8a5r aWaY (
g

r gWg, ~8!

where

r a5^exp~bDJsxsy!&a5cosh~bDJ!1^sxsy&asinh~bDJ!.
~9!

In either the droplet-scaling or the chaotic pairs pictu
there are in eachG only two pure states~depending onG in
chaotic pairs!, each with weight 1/2. Because all even corr
lations are the same in each pair of~flip-related! pure states,
the transformation of Eq.~8! leaves the weights unchange

However, in nonstandard SK there exist pure states wit
each~mixed! G with relative domain walls, so that they dif
fer in at least some even correlation functions. But this th
rules out thatrJ must always be a uniform mixture of th
pure states, because a suitable change of couplings will
the weights for eachG in such a way that the distribution
over pure states ofrJ also shifts.~This reasoning can be
made rigorous, but because other parts of the argumen
heuristic, we omit a proof.!

In other words, we argued above that the invariance of
metastate with respect to boundary conditions left open
the only reasonable possibility for the presence of many p
states, thatrJ , the average over the metastate, be some
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57 1361SIMPLICITY OF STATE AND OVERLAP STRUCTURE . . .
of uniform mixture over the pure states. This must be true
anyJ ~with probability one!, so the weight distribution ove
all pure states must also be invariant with respect to chan
in J. But this invariance is inconsistent with the transform
tion properties of theG ’s with respect to finite changes inJ:
if there are multiple pure states in theG ’s, with the pure
states in eachG not having the same even correlations~i.e.,
they have relative domain walls!, then their relative weights
must vary~as expected! with changes in the coupling rea
ization. This leads to a contradiction, and therefore rules
not only nonstandard SK but any picture in which theG ’s are
a nontrivial mixture of pure states.

Our conclusion, based on the above combination of b
rigorous results and heuristic arguments, is that the nonst
ard SK picture cannot be valid in any dimension and at a
temperature. More generally, the many invariances of
spin glass metastate cannot supportany picture in which
thermodynamic mixed states~other than a single flip-relate
pair! are seen in finite volumes.

Given that the only reasonable possibilities remain
~that display broken spin-flip symmetry! are the droplet-
scaling picture and the chaotic pairs picture, we conclu
that the overlap distribution functionPG ,

PG~q!5(
a,g

WG
aWG

gd~q2qag! ~10!

can at most be a pair ofd functions at6qEA for eachG; i.e.,
in each finite volume the overlap between pure states
appear in that volume is just that pair ofd functions. This
will be the case regardless of whether there is only a sin
pair or uncountably many pairs of pure states. We will d
cuss this further in Sec. VI, but first we turn to another top

In the next section we present a simple scaling appro
that provides both a plausibility argument and also a phys
starting point for understanding the ‘‘chaotic pairs’’ man
state picture introduced in Refs.@21–23#. It is important to
note that this scaling picture is consistent with the Fish
Huse droplet picture@27,30# for appropriate values of the
new scaling exponents, but for other values can give rise
different thermodynamic picture.

V. A SCALING APPROACH
TO THE CHAOTIC PAIRS PICTURE

We have argued above that with periodic boundary c
ditions, one should see at most a single pair of flip-rela
pure states in a large volume. As already discussed,
leaves open the possibilities of either a single pure state~e.g.,
but not necessarily, a paramagnet!, a single pair of pure
states~as in the droplet picture!, or the chaotic pairs many
state picture discussed above. We now present a simple
tension of earlier scaling-droplet arguments@27,30# which is
consistent with this last possibility, and also provides a p
sible scenario for the spatial structure of domain wall co
figurations among the ground states.

The object here is to obtain estimates on the differenc
energy or free energy between the lowest-lying state i
fixed volume and the next higher one. The appearanc
nonzero temperature of multiple~non-spin-flip related! states
in a single~large! volume requires that the energies of t
r
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lowest-lying states differ by order one. If, on the other han
the ‘‘minimal’’ energy difference scales as some positi
power of the system size, then one will see at most a sin
pair of states in any given box~with spin-symmetric bound-
ary conditions, such as periodic!.

To analyze the appearance in finite volumes, and at v
low temperature, of infinite-volume pure states, as in Eq.~1!,
we will consider infinite-volumeground states restricted to

the cube of sizeL, with a fixed boundary conditionŝ chosen
independently of the couplings. In our analysis below
will treat the boundary spins as chosen randomly and in
pendently of the couplings — but for a nonrandom fixed B
such as plus, the same arguments go through with m
modifications.

Although there maya priori be infinitely many infinite-
volume ground states, the number of distinct restrictions
the cube is finite and its logarithm should be of ord
Ld212f for some f. The scaling exponentf ~with
0<f<d21) may be understood in another way: the min
mum number of spins on the surface of the cube that di
between two infinite-volume ground states, whose spins
agree at~or near! the origin @46#, should scale asLf. These
two states should correspondingly differ in the bulk by
number of spins of~at least! orderLf11.

If there exists only a single pair of flip-related groun
states~as argued in Refs.@28,29#!, then f5d21. In the
highly disordered spin glass model of Refs.@41,42# ~see also
Ref. @43#!, it appears thatf5d21 below eight dimensions
while f53 above eight dimensions.

Let us examine the exponentf more closely. Althougha
priori there seems to be no reason to exclude the possib
that f50, there are several arguments indicating otherw
~Note also thatf50 would saturate the possible growth ra
of the number of distinguishable ground states in any fin
volume since the logarithm of this number cannot exce
orderLd21.! If f50, then spins in regions between doma
walls would exist in one-dimensional tubelike objects.
seems very unlikely that such tubes could be stable;
eventually such a tube should encounter a fluctuation wh
destroys its structure. A second and somewhat different
gument uses the fact thatf should be bounded from below
by the exponentu introduced by Fisher and Huse@27,30#,
which governs the minimal interface free energy betwe
different pure states on a length scaleL; i.e., this minimal
free energy is presumed to grow asLu. It is not difficult to
see, then, thatf>u. However, it was argued in Refs
@27,30# that the inequalityu.0 is necessary in order fo
spin-flip symmetry to be broken at positive temperature.
what follows we therefore always assume thatf.0.

Before considering the EA model itself, we first treat t
much simpler case of a homogeneous Ising ferromagnet
fixed BC’s chosen at random. First we consider the ene
difference between the plus and minus ground states~with
interface ground states temporarily not considered!. Here
there is no bulk energy difference, andf5d21. Because of
the randomness of the BC, the boundary energy differenc
of orderLf/2. The conclusion in this case@47# ~see also@23#!
is that the total energy difference is alsoLf/2 and thus with
random BC’s one does not see a mixture of the plus
minus states but only one of them~chosen by the sign of the
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1362 57C. M. NEWMAN AND D. L. STEIN
boundary energy! chaotically changing withL.
What about seeing interface states? Here, the approp

bulk energy difference between the constant ground st
and the interface states scales asLd21 ~with f the same as
before! and so the bulk energy difference dominates
boundary energy difference. In this case the total energy
ference between the homogeneous state and the lowest-
interface state is of orderLd21. As a result, all interface
states are ‘‘invisible’’ in the random BC finite-volume ferro
magnet@23,47#.

We now consider the EA Ising spin glass from this po
of view. That is, we consider the energies of the restrictio
of all infinite-volume ground states to theLd cube centered a
the origin. As before, we divide the energy into a bulk an
boundary part, and ask how the energy difference betw
the lowest-energy and next-lowest-energy state scales
L. Consider the stater* with minimum total energy~subject
to the fixed boundary condition! and the state of next lowes
energy that differs fromr* near the origin. By the definition
of f, the two states differ by at leastLf11 spins in the bulk
and byLf spins on the boundary.

To estimate the energy differences between low-ly
states, we will separately consider the boundary energy c
ing from the couplings betweenŝ and the adjacent spins i
the cube, and the bulk energy difference~from the remainder
of the finite-volume Hamiltonian!. If there were no bulk en-
ergies to consider, then one might expect that two sta
which differ by Lf spins on the boundary would typicall
differ by an overall energy of orderLf/2. If this were indeed
the case for the two lowest-lying states in almost any v
ume, then one would see only one state per volume~for fixed
boundary conditions!. However, since one is doing a min
mization problem which includes bulk energies as well, it
not at all obviousa priori that this will happen. In particular
there might be some delicate cancellation between bulk
boundary energies.

We will now, however, present a specific scenario
which an explicit calculation shows that the lowest-lyin
states, in a volume with fixed boundary conditions chos
independently of the couplings, do indeed have an ene
difference of orderLf/2. This example is presented as a pla
sibility argument and demonstrates one way in which t
can occur, but is not meant to imply that it can occur inonly
this way.

Consider then a scenario in which the spin at the ori
belongs to a cluster, not intersected byany domain walls,
whose intersection with the boundary as before is of sizeLf.
We denote that clusterS0. Suppose further thatra is a gen-
eral infinite-volume ground state, and thatEL(a) is the en-
ergy — including both the boundary and bulk compone
— of ra restricted toLL , theLd cube centered at the origin

The energyEL(a) can therefore be written

EL~a!52 (
xPS0ù]LL

sx
as̄x2 (

xP]LL\S0

sx
as̄x1EL

b~a!,

~11!

where the first term is the contribution from the spins in t
cluster S0 on the boundary]LL , the second term is the
surface energy contribution from all other boundary spi
and the final term is the energy contribution of the bu
te
es
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spins. More precisely,]LL is the set of sitesx inside LL
with a nearest neighbory outside]LL and s̄x is the bound-
ary spinŝx timesJxy . Equation~11! can be rewritten as

EL~a!52h~a!ZLAuS0ù]LLu1YL~a!, ~12!

where three new variables have been introduced:h(a)561
represents the sign of the spin at the origin in ground statea,
ZL is ~approximately! a Gaussian random variable with ze
mean and unit variance, andYL(a) depends both on the bul
energy ofa and on the rest of the boundary spins~i.e., those
not included in the first term!.

In going from Eq.~11! to Eq. ~12! we used the fact tha
the boundary condition consists of fixed random spins, c
sen independently ofa. The crucial observation is that th
random variablesZL , which arise from the random boundar
conditions, are independent of the spectrum of the~mostly!
bulk energiesYL(a). We now show that, regardless of th
number and distribution of theYL(a)’s as a varies, there
will be no strong cancellations between the two terms~with
probability close to one!.

Consider the ground state whose energy in Eq.~11! is the
minimum, and also the ground state which has the n
higher energy, and isrequired to have a relative spin flip
with respect to the lowest-energy state at the origin. We t
have

U min
g:s0

g
521

EL~g!2 min
a:s0

a
511

EL~a!U
5u2ZLAuS0ù]LLu1YL

22YL
1u, ~13!

where YL
2 and YL

1 are the bulk plus remainder bounda
energies of the two lowest-lying states with a relative s
flip at the origin.

SinceZL andYL
22YL

1 are functions ofdisjoint sets of the
random boundary spins, they are independent random v
ables. Hence, variances add and the effect ofYL

22YL
1 on the

random variable 2ZLAuS0ù]LLu can only be toincreasethe
spread of its distribution. This allows us to conclude th
with probability close to one~i.e., for most choices of the
boundary spins! the expression on the right-hand side of E
~13! is of order~at least! AuS0ù]LLu, i.e., of orderLf/2. As
long asf.0, which is part of our scenario, this growth wit
L in the spacing of the low-lying spectrum of ground sta
argues for the appearance at small positive temperatur
only a single pure state in large finite-volume Gibbs sta
with fixed BC’s ~that are independent of the couplings!.

The above argument is instructive in several respects
demonstrates that, given the condition that no domain w
separates the origin from the boundary of the box, there
be no miraculous ‘‘conspiracy’’ under which bulk an
boundary energies cancel out to order one. It does requi
strong condition, namely, that all domain walls, in the uni
of all symmetric differences over all ground states, do n
form any closed and bounded regions. As stated above,
is asufficientcondition for the scaling argument given abo
to work, but we see no reason at this point why it should
a necessarycondition in order for the conclusions to b
valid.
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Nevertheless, it provides one interesting scenario for
spatial structure of ground states and domain walls if m
states should exist. Interestingly, in the only example
which we are aware in which a finite-dimensional spin gla
apparentlydoespossess many states in high dimensions
the highly disordered ground state model of Refs.@41,42# —
exactly this structure occurs. These considerations provi
possibly fruitful avenue for future investigations.

VI. PURE STATES IN FINITE VOLUMES:
WHAT IS GOING ON HERE?

In this section we address what it actually means, in
operational sense, to ‘‘see’’ a pure state — which formally
an infinite-volume object — inside a finite volume. We th
use that analysis to answer a glaring question: if states
overlaps in finite volumes are restricted to, at most, a sin
pair of flip-related pure states and a pair ofd functions at
6qEA , respectively, then what are the many numerical sim
lations ~e.g., @12,16,18,19,34,35#! and experiments@48,49#
that appear to see a more complicated state and ove
structure actually seeing?

Our main point will be that pure state structure can a
does manifest itself in finite volumes, and governs the ph
ics at finite length scales. Conversely, observations mad
large, finite volumes must in turn reveal the thermodynam
structure and the nature of ordering of the system — if s
ficient care is given to the analysis of those observatio
Indeed, were both the above statements not true, it would
difficult to see why the study of thermodynamics would
of any interest to physics.

While the above assertions have long been noncontro
sial for most statistical mechanical systems and models, t
remains considerable confusion in the case of spin gla
@50#. At least part of the problem is that reliance on t
overlap structure alone can at best give only partial — a
sometimes misleading — information on the thermodyna
ics of realistic spin glass models@21,22,28,29#. A second
problem is that, as we have emphasized in previous pa
@21,22#, the connection between finite- and infinite-volum
behavior may be more complex and subtle in spin glas
than in simpler systems. An analysis of this connection t
deserves more thought than a simple attempt to sever the
altogether between the two behaviors~as in Appendix I of
@19#!. So in this section we will expand on previous discu
sions@22# to further clarify these issues.

A thermal state, whether pure or mixed, is complet
specified by the set of all of its~one-point, two-point, three
point, . . . ) correlation functions. In a finite volume, a sta
will manifest itself through the appearance of a particular
of such correlations. Because boundary effects will inva
ably alter or distort~compared to an infinite-volume state!
these correlations in some region~whose size will depend on
the specifics of the Hamiltonian, temperature, dimensi
etc.!, one must always be careful to examine them in a v
ume small enough so that these ‘‘distortion’’ effects are n
ligible. In other words, the boundary should be sufficien
far from the region under examination so that an accu
picture of the thermodynamics can be obtained@51#.

So, for example, even in the paramagnetic state,
would measure nonzero magnetizations at interior sites in
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vicinity of a boundary on which all spins are fixed~e.g., to be
11). As the boundary moves farther out, subsequent m
surements at those same sites would find their magnetiza
tending to zero.

It is not unusual, even for comparatively simple system
for boundary effects to penetrate more deeply into the in
rior than a shallow ‘‘boundary layer.’’ Consider the examp
of the two-dimensional uniform Ising ferromagnet. It
known @52,53# that this system has only two pure states
the translationally invariant positive and negative magneti
tion states — for all 0,T,Tc . Suppose now that on a
square of sideL one were to impose fixed boundary cond
tions such that all spins on the right half of the boundary
11 and all spins on the left are21. This will impose a
domain wall on the system, whose maximum~and typical!
deviation~from the vertical line passing through the origin!
will scale asL1/2 ~see Fig. 1!. So for all largeL the system
gives theappearanceof having a pure state with a domai
wall @54#; indeed, the domain wall always stays quite f
from the~vertical! boundaries. However, if one were to loo
at any fixed, finite region, then as the sizeL of the square
grows, the domain wall eventually moves outside the fix
region, and one would see only a mixture of the positive a
negative translationally invariant states. The~equal, in this
case, asL→`) weights in the mixture correspond to th
probabilities of the domain wall thermally fluctuating to th
left or to the right of the fixed region.

FIG. 1. A typical spin configuration in a two-dimensional Isin
ferromagnet at positive temperature belowTc , with fixed spin
boundary conditions that are11 on the right half of the boundary
and 21 on the left half. The maximum~and typical! deviation of
the induced domain wall from the vertical line through the origin
O(L1/2). This domain wall persists on all length scales but is un
lated to the low-temperature ordering. It will miss a sufficien
small @o(L1/2)# window about the origin; examination of the orde
parameter inside only this window will correctly capture the th
modynamics.~In particular, one can examine any fixed finite regio
as the boundaries move far away.! This sketch depicts a relatively
small square; for largeL, the domain wall would be virtually indis-
tinguishable from a straight line through the origin~on the scaleL
of the entire square!, and the window would be extremely small~on
that scale!.
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1364 57C. M. NEWMAN AND D. L. STEIN
So in this example the domain wall is an artifact of t
imposed boundary condition, and has nothing to do with a
thermodynamic structure or low-temperature ordering pr
erties of the system. Moreover, consideration of the spin c
figurations over the entire square would lead to incorr
conclusions about the pure state structure. This illustrates
contention thatin order to arrive at an accurate picture o
the thermodynamic structure and the nature of ordering o
system, one must focus attention on a fixed ‘‘window’’ ne
the origin (which may be arbitrarily large, but is small com
pared to the entire volume under consideration).

This conclusion is especially important when evaluatin
and drawing inferences from, overlap functions. A more
tailed discussion is given in the Appendix of Ref.@22#, to
which we refer the reader; here we will only reiterate
illuminating example due to van Enter@55#, which in turn
extends an earlier example due to Huse and Fisher@28#. Con-
sider the overlap distribution of an Ising antiferromagnet
two dimensions with periodic boundary conditions. For od
sized squares the overlap is equivalent~by the obvious gauge
transformation! to that of the ferromagnet with periodi
boundary conditions, and for even-sized squares it is equ
lent to that of the ferromagnet with antiperiodic bounda
conditions. If the overlap distribution were computed in t
full square, it would therefore oscillate between two differe
answers@one a sum of twod functions at plus or minus the
square ofM* , the spontaneous magnetization, and the ot
a continuous distribution between6(M* )2]. On the other
hand, computing overlaps in boxes which are much sma
than the system size would give rise in this example t
well-defined answer — i.e., the twod-function overlap dis-
tribution — which provides a more accurate picture of t
nature of ordering in this system.

With these remarks in mind, we now turn to the finit
dimensional Ising EA spin glass. Essentially all the simu
tions of which we are aware compute the overlap distribut
in the entire box. Boundary conditions are chosen indepe
dently of the couplings, and are usually periodic. Given o
conclusion that, under these circumstances, at most a pa
flip-related pure states will appear in almost any finite v
ume, we suspect that the overlaps computed over the e
box are observing domain wall effects arising solely from
imposed boundary conditions, rather than revealing the
tual spin glass ordering.~This is the reason why in Sec. V w
looked only at states with relative domain walls in the vic
ity of the origin.!

In other words, if overlap computations were measured
‘‘small’’ windows far from any boundary, one should fin
only a pair ofd functions. One way to test this would be
fix a region at the origin, and do successive overlap com
tations in that fixed region for increasingly larger boxes w
imposed periodic boundary conditions; as the bounda
move farther away, the overlap distribution within the fix
region should tend toward a pair ofd functions@56#.

It is important to clear up one other misconception. It w
asserted at the end of Sec. 2 in Ref.@19# that ‘‘after Ref.@34#
one has to argue that the physics must change after s
very large length scale . . . in order to claim that the me
field limit is not a good starting point to study the realis
case of finite dimensional models... .’’ Although, of cours
this changeover may well occur, it is at least as likely tha
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does not@57#, and that nontrivial overlaps will be seen for a
large L ~as the uniform ferromagnet domain wall examp
illustrates!. The real problem is in some sense the oppos
namely, that overlap computations are not being done
small enough regions to provide an accurate picture of s
glass ordering.

VII. CONCLUSIONS

In our previous papers@20–22#, we showed that spin
glasses may be more complex — in the relation betw
their behavior in finite and infinite volumes — than had pr
viously been noted in the literature. In the present paper,
have presented arguments indicating that, in a differ
sense, spin glasses are moresimplethan had previously been
claimed in much of the literature.

Our main conclusion is that, for realistic spin glass mo
els such as Ising Edwards-Anderson, any large finite volu
~with, say, spin-symmetric BC’s, such as periodic, chos
independently of the couplings! will display at most a single
pair of flip-related pure states. This may correspond to eit
a single pair of pure states in total, as in the droplet-sca
picture @27,29,30#, or to the ‘‘chaotic pairs’’ picture intro-
duced in Ref.@21# and elaborated upon in Refs.@22,23#.

This rules out the nonstandard SK picture also introdu
in Ref. @21# and elaborated upon in Refs.@22,23#. Combined
with our earlier result@20# ruling out the standard SK pic
ture, we conclude thatthe thermodynamic structure and th
nature of spin glass ordering, whether in finite or infini
volumes, cannot be mean-field-like in any dimension and
any temperature.

The argument leading to this conclusion followed a the
rem, presented in Sec. IV, that the metastate for fixedJ is
invariant with respect to arbitrary choices of flip-relate
boundary conditions~such as periodic and antiperiodic!. It
was then argued that only the simplest pure state~and corre-
sponding overlap! structures could be so robust@58#. The
only reasonable scenario under which~uncountably! many
states could then appear is that, statistically, the states
insensitive to the boundary conditions. That is, the m
astates would be generated~as in the highly disordered
ground state model! through some kind of random fair-coin
tossing process.

We argued in Sec. VI that overlap computations should
done in small interior boxes~surrounded by much large
boxes where the boundary conditions are actually impos!
in order to remove boundary effects and get a picture of s
glass ordering that is not misleading. We expect that~with
periodic BC’s! for those dimensions and temperatures wh
qEAÞ0, this procedure would result in a single pair ofd
functions at6qEA @59#.

We also presented in Sec. V a scaling argument tha
shows how a ‘‘chaotic pairs’’~or chaotic pure states, unde
fixed BC’s! picture can arise. We provided an explicit calc
lation that supported this picture under the sufficient~but not
necessary! condition that the union of domain walls betwee
all pairs of pure states form no closed and bounded regio
Interestingly, exactly such a structure is present in the o
example of a nontrivial short-ranged spin glass model kno
to have many ground states — i.e., the highly disordered s
glass model of Refs.@41,42# ~see also@43#!.
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Given that an overlap structure computed in an entire
nite volume~as opposed to that computed within a smal
window! might be nontrivial due only to boundary effects,
cannot yield definitive information on the ordering of th
spin glass phase. Furthermore, there is noa priori reason to
expect that it would display any exotic or intricate propert
such as ultrametricity, or in general bear any particular
semblance to the mean-field structure observed for the
model. However, the domain walls responsible for this ov
a-

a-
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lap structure~if present! could have an observable, althoug
perhaps nonuniversal, effect on dynamics. We plan to
plore this issue in the future.
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